Search resumes and take the initiative to contact job applicants for higher recruiting efficiency. The Choice of Hundreds of Companies.
台灣台中
十月 2020 - Present
工作內容:
● 利用機器和深度學習改善工廠生產
● 協助智慧製造專案發展與工廠並行發展
● 處級數位轉型課程規劃
● 內部數位轉型課程講師
專案成果:
1.冰水系統節能最佳化
● 內容:結合空調原理和大數據,建立機器學習模型,尋找最佳節能參數。
● 效益:節省電費(377萬元/年)及碳排放。
2.放流水加藥最佳化
● 內容:考慮水質和流量,調整加藥量(避免浪費),穩定pH值。
● 效益:減少藥費(131萬元/年)。
3.鼓風機節能最佳化
● 內容:考慮水質和流量,調節鼓風機頻率,且滿足生物需求。
● 效益:節省電費(58萬元/年)。
4.無塵室溫濕度控制
● 內容:求出參數建議值讓溫濕度穩定。
● 效益:將溫度和濕度控制在5%以內。
● 榮譽:全AUO智慧製造楷模、智慧製造_菁英Level 3人才
Responsible for:
● Improve factory production with machine and deep learning
● Help the development of smart manufacturing projects and the parallel development of the factory
(Equipment warning, energy saving and fee reduction, etc.)
Project achievements:
i. Chilled Water Energy Saving System
● Content: Combine air conditioning principles and big data, create machine learning model, and find the best energy-saving parameters.
● Benefit: Reduce electricity bill 3,770,000 NTD/year and carbon emission.
ii. Optimization of discharge water and dosing
● Content: Adjusted dosage based on water quality and pH value.
● Benefit: Reduce drug expenses 1,310,000 NTD/year.
iii. Power saving of blower
● Content: Consider water quality and flow, adjust blower frequency, achieve biological needs.
● Benefit: Reduce electricity bill 580,000 NTD/year.
iv. Clean room Temperature and Humidity Management
● Content: Find the parameters suggested value let temperature and humidity stability.
● Benefit: control the temperature and humidity within 5%.
● Honor: Role model of Smart manufacturing、Level 3 of Talents
九月 2018 - 九月 2020
工作內容:
● 參與客戶需求分析,評估技術可行性並進行數據分析、模型建立等相關技術的規劃與開發。
● 負責數據清洗、加工、分類等開發工作,運用數據演算法及工具對數據進行挖掘工作。
● 負責數據模型的規劃並進行數據分析,支持應用端資料分析與預測。
專案成果:
1. 預測性維護
● 內容:結合生產資料與故障紀錄,︀分析找出即將故障的高風險機台。
● 效益:藉由提早發現設備故障,︀提早進行維護保養,︀減少機台當機時間。
2. 訂單預測
● 內容:結合大數據與機器學習模型預測未來訂單數量(考慮前置時間的條件下)。
● 效益:針對預測數量進行採購,︀避免數量不足或過多造成額外成本。
3. 新進人員久任預測
● 內容:透過分析ERP資料(個人資料、工時、薪資、打卡),︀預測新進人員久任機率,︀
提供部門主管招聘建議。
● 效益:新人離職率從59%降至20%。
Responsible for:
● Responsible for data cleaning, and use data algorithms and tools to data mining.
● Participate in customer needs analysis, evaluate technical feasibility and building model.
Project achievements:
i. Predictive Maintenance and Quality
● Content: Calculated the best maintenance time via XGB.
● Benefit: 86% of the machine failures can be discovered early.
ii. Order Forecast
● Content: Order Forecast via Machine Learning model(Lasso、Ridge、XGB).
● Benefit: Result in correctly control 70% of orders.
iii. Employee turnover prediction using ERP data
● Content: Finding Your Best Candidates via Random Forest model.
● Benefit: Expected benefit is reducing the resignation rate from 59% to 20%.
十一月 2017 - 九月 2018
1. 招生分析與推薦
● 內容:透過網路爬蟲取得公開資料(交叉查榜)並合併私人資料(學生基本資料&成績)進行分析,為各系所提供招生建議。
● 效益:錄取率提高8.3%。
2. 建立共用資料庫
● 內容:整合各項填報資料(ex: 校庫、QS大學排名)所需欄位並建立資料庫。
● 效益:減少人員重覆填報相同資訊的次數與時間。
i. Admissions Analysis
● Content: Getting the public data via Web Scraping and merge private data for analysis, provide each department suggestions for admissions.
● Benefit: Resulted in increasing the admission rate by 8.3%.
ii. Create General Database
● Content: Integrate data fields for all submitted information need.
● Benefit: Reduce the number and time of personnel filling in reports.
十二月 2016 - 十月 2017
串聯健保資料庫檔案(個人基本資料+看病或住院紀錄+用藥紀錄)
經由數據清洗、加工、分類, 分析用藥頻率與疾病之關係。
Data mining in National Health Insurance Research Database (NHIRD) via SAS and R.
Analyze and predict the relationship between medication frequency and disease.
2013 - 2015
2009 - 2013
台灣台中
十月 2020 - Present
工作內容:
● 利用機器和深度學習改善工廠生產
● 協助智慧製造專案發展與工廠並行發展
● 處級數位轉型課程規劃
● 內部數位轉型課程講師
專案成果:
1.冰水系統節能最佳化
● 內容:結合空調原理和大數據,建立機器學習模型,尋找最佳節能參數。
● 效益:節省電費(377萬元/年)及碳排放。
2.放流水加藥最佳化
● 內容:考慮水質和流量,調整加藥量(避免浪費),穩定pH值。
● 效益:減少藥費(131萬元/年)。
3.鼓風機節能最佳化
● 內容:考慮水質和流量,調節鼓風機頻率,且滿足生物需求。
● 效益:節省電費(58萬元/年)。
4.無塵室溫濕度控制
● 內容:求出參數建議值讓溫濕度穩定。
● 效益:將溫度和濕度控制在5%以內。
● 榮譽:全AUO智慧製造楷模、智慧製造_菁英Level 3人才
Responsible for:
● Improve factory production with machine and deep learning
● Help the development of smart manufacturing projects and the parallel development of the factory
(Equipment warning, energy saving and fee reduction, etc.)
Project achievements:
i. Chilled Water Energy Saving System
● Content: Combine air conditioning principles and big data, create machine learning model, and find the best energy-saving parameters.
● Benefit: Reduce electricity bill 3,770,000 NTD/year and carbon emission.
ii. Optimization of discharge water and dosing
● Content: Adjusted dosage based on water quality and pH value.
● Benefit: Reduce drug expenses 1,310,000 NTD/year.
iii. Power saving of blower
● Content: Consider water quality and flow, adjust blower frequency, achieve biological needs.
● Benefit: Reduce electricity bill 580,000 NTD/year.
iv. Clean room Temperature and Humidity Management
● Content: Find the parameters suggested value let temperature and humidity stability.
● Benefit: control the temperature and humidity within 5%.
● Honor: Role model of Smart manufacturing、Level 3 of Talents
九月 2018 - 九月 2020
工作內容:
● 參與客戶需求分析,評估技術可行性並進行數據分析、模型建立等相關技術的規劃與開發。
● 負責數據清洗、加工、分類等開發工作,運用數據演算法及工具對數據進行挖掘工作。
● 負責數據模型的規劃並進行數據分析,支持應用端資料分析與預測。
專案成果:
1. 預測性維護
● 內容:結合生產資料與故障紀錄,︀分析找出即將故障的高風險機台。
● 效益:藉由提早發現設備故障,︀提早進行維護保養,︀減少機台當機時間。
2. 訂單預測
● 內容:結合大數據與機器學習模型預測未來訂單數量(考慮前置時間的條件下)。
● 效益:針對預測數量進行採購,︀避免數量不足或過多造成額外成本。
3. 新進人員久任預測
● 內容:透過分析ERP資料(個人資料、工時、薪資、打卡),︀預測新進人員久任機率,︀
提供部門主管招聘建議。
● 效益:新人離職率從59%降至20%。
Responsible for:
● Responsible for data cleaning, and use data algorithms and tools to data mining.
● Participate in customer needs analysis, evaluate technical feasibility and building model.
Project achievements:
i. Predictive Maintenance and Quality
● Content: Calculated the best maintenance time via XGB.
● Benefit: 86% of the machine failures can be discovered early.
ii. Order Forecast
● Content: Order Forecast via Machine Learning model(Lasso、Ridge、XGB).
● Benefit: Result in correctly control 70% of orders.
iii. Employee turnover prediction using ERP data
● Content: Finding Your Best Candidates via Random Forest model.
● Benefit: Expected benefit is reducing the resignation rate from 59% to 20%.
十一月 2017 - 九月 2018
1. 招生分析與推薦
● 內容:透過網路爬蟲取得公開資料(交叉查榜)並合併私人資料(學生基本資料&成績)進行分析,為各系所提供招生建議。
● 效益:錄取率提高8.3%。
2. 建立共用資料庫
● 內容:整合各項填報資料(ex: 校庫、QS大學排名)所需欄位並建立資料庫。
● 效益:減少人員重覆填報相同資訊的次數與時間。
i. Admissions Analysis
● Content: Getting the public data via Web Scraping and merge private data for analysis, provide each department suggestions for admissions.
● Benefit: Resulted in increasing the admission rate by 8.3%.
ii. Create General Database
● Content: Integrate data fields for all submitted information need.
● Benefit: Reduce the number and time of personnel filling in reports.
十二月 2016 - 十月 2017
串聯健保資料庫檔案(個人基本資料+看病或住院紀錄+用藥紀錄)
經由數據清洗、加工、分類, 分析用藥頻率與疾病之關係。
Data mining in National Health Insurance Research Database (NHIRD) via SAS and R.
Analyze and predict the relationship between medication frequency and disease.
2013 - 2015
2009 - 2013